Optical Waveguide Field Equations
This is a continuation from the previous tutorial - Waveguide Modes.
For a linear, isotropic dielectric waveguide characterized by a spatial permittivity distribution of ε(x, y), Maxwell's equations in (40) and (41) [refer to the Harmonic Fields tutorial] can be written as
\[\tag{8}\pmb{\nabla}\times\mathbf{E}=-\mu_0\frac{\partial{\mathbf{H}}}{\partial{t}}\]
\[\tag{9}\pmb{\nabla}\times\mathbf{H}=\epsilon\frac{\partial{\mathbf{E}}}{\partial{t}}\]
Because the optical fields in the waveguide have the form of (1) and (2) [refer to the waveguide modes tutorial], these two Maxwell's equations can be written in the following form:
\[\tag{10}\frac{\partial{\mathcal{E}_z}}{\partial{y}}-\text{i}\beta\mathcal{E}_y=\text{i}\omega\mu_0\mathcal{H}_x\]
\[\tag{11}\text{i}\beta\mathcal{E}_x-\frac{\partial{\mathcal{E}_z}}{\partial{x}}=\text{i}\omega\mu_0\mathcal{H}_y\]
\[\tag{12}\frac{\partial{\mathcal{E}_y}}{\partial{x}}-\frac{\partial{\mathcal{E}_x}}{\partial{y}}=\text{i}\omega\mu_0\mathcal{H}_z\]
and
\[\tag{13}\frac{\partial{\mathcal{H}_z}}{\partial{y}}-\text{i}\beta\mathcal{H}_y=-\text{i}\omega\epsilon\mathcal{E}_x\]
\[\tag{14}\text{i}\beta\mathcal{H}_x-\frac{\partial{\mathcal{H}_z}}{\partial{x}}=-\text{i}\omega\epsilon\mathcal{E}_y\]
\[\tag{15}\frac{\partial{\mathcal{H}_y}}{\partial{x}}-\frac{\partial{\mathcal{H}_x}}{\partial{y}}=-\text{i}\omega\epsilon\mathcal{E}_z\]
From these equations, the transverse components of the electric and magnetic fields can be expressed in terms of the longitudinal components:
\[\tag{16}(k^2-\beta^2)\mathcal{E}_x=\text{i}\beta\frac{\partial{\mathcal{E}_z}}{\partial{x}}+\text{i}\omega\mu_0\frac{\partial{\mathcal{H}_z}}{\partial{y}}\]
\[\tag{17}(k^2-\beta^2)\mathcal{E}_y=\text{i}\beta\frac{\partial{\mathcal{E}_z}}{\partial{y}}-\text{i}\omega\mu_0\frac{\partial{\mathcal{H}_z}}{\partial{x}}\]
\[\tag{18}(k^2-\beta^2)\mathcal{H}_x=\text{i}\beta\frac{\partial{\mathcal{H}_z}}{\partial{x}}-\text{i}\omega\epsilon\frac{\partial{\mathcal{E}_z}}{\partial{y}}\]
\[\tag{19}(k^2-\beta^2)\mathcal{H}_y=\text{i}\beta\frac{\partial{\mathcal{H}_z}}{\partial{y}}+\text{i}\omega\epsilon\frac{\partial{\mathcal{E}_z}}{\partial{x}}\]
where
\[\tag{20}k^2=\omega^2\mu_0\epsilon(x,y)\]
is a function of x and y to account for the transverse spatial inhomogeneity of the waveguide structure.
The relations in (16) - (19) are generally true for a longitudinally homogeneous waveguide of any transverse geometry and any transverse index profile where ε(x, y) is not a function of z. They are equally true for step-index and graded-index waveguides.
In waveguides that have circular cross sections, such as optical fibers, the x and y coordinates of the rectangular system can be transformed to the r and φ coordinates of the cylindrical system for similar relations.
Therefore, in a waveguide, once the longitudinal field components, \(\mathcal{E}_z\) and \(\mathcal{H}_z\), are known, all field components can be obtained. The fields in a waveguide can have various vectorial characteristics. They can be classified based on the characteristics of the longitudinal field components:
1. A transverse electric and magnetic mode, or TEM mode, has \(\mathcal{E}_z=0\) and \(\mathcal{H}_z=0\). Dielectric waveguides do not support TEM modes, as can be seen from (16) - (19).
2. A transverse electric mode, or TE mode, has \(\mathcal{E}_z=0\) and \(\mathcal{H}_z\ne 0\).
3. A transverse magnetic mode, or TM mode, has \(\mathcal{H}_z=0\) and \(\mathcal{E}_z\ne 0\).
4. A hybrid mode has both \(\mathcal{E}_z\ne 0\) and \(\mathcal{H}_z\ne 0\). Hybrid modes do not appear in planar waveguides but exist in nonplanar waveguides of two-dimensional transverse optical confinement. The HE and EH modes of optical fibers are hybrid modes.
The next part continues with the Wave Equations for Optical Waveguides tutorial.